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Statement of the problem

We consider

ό ὥό Ὢὸȟ ὼɴ πȟЉȟ ὸ π (1)

(2)

(3)

where  ὼᶰ5π . In this problem, it is required to find 

(4)

and then calculate the function ό ὼȟὸsatisfying (1-4) under condition that instead of 

exact values of•ὸȟὫὸwe are given some approximations •ȟὫ and an error level 

 π such that
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Basic assumptions

Presume that                                          for all              and there exist   

and there exist  ὑ πand   πsuch that for any ὼɴ πȟЉ and any ὸ π

ȿόὼȟὸȿ ὑὩ

All functions satisfy the Dirichletconditions for ὸɴ πȟὝ for any T > 0.
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Research direction are

Å to reduce the inverseproblem (1)-(4) to integral equation that

described the explicit dependenceof the unknown boundary

functionʕÔon the knowninitial data(via the directand inverse

Laplacetransforms);

Å to develop   numerical method for solving the resulting integral 
equation; 

Å to compare the obtained boundary function  ὸwith test 
function;

Å to calculate ό ὼȟὸ based on Ὣ and  • via proposed scheme



Mathematical modelling

We consider the direct problem,  assuming that όЉȟὸ ὸ is  known

ό ὥό Ὢὸȟὼɴ πȟЉȟὸ π (5)

(6)

(7)

The Laplace transform όὼȟὴ of the solution to the direct problem (5)ς(7) has the 
following form:

Using the MittagςLefflertheorem on the expansion of functions in series of simple 
fractions and the Cauchy theorem, we obtain
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The Heat Transfer Integral Model

Applying the inverse Laplace transform and using the convolution theorem we 

obtain

Substituting the  values                    into this relation we obtain the integral equation. 

To develop the computation scheme, we approximate the integral equation as the 
truncated series.
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Numerical method involves

ÅChoose the number of terms N,M, L  in the truncated series. 

ÅFind  the regularized solution  ὸwith fixed N from the equation:

ὑ ὸ ††Ὠ† ὗ ὸ †•† Ὑ ὸ †Ὢ† Ὠ† Ὣ ὸ

Å Calculate  the value ɝ by formula 

The iteration process is stopped when  ɝ achieves the minimized quantity
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ÅSolving the   direct  problem (5)-(7) with the test values •ὸand ὸȢ

ÅSimulating  the data Ὣὼ .

ÅModelling of  the values   • , Ὣ at the each point ὸ Ὦ ρ by the  

formulas

• • Ὡὶὶȟ Ὣ Ὣ Ὡὶὶȟ Ὦ ρȟὔ ρ

where   Ὡὶὶ, Ὡὶὶare simulated as evenly distributed random variables                                                        

ÅThe required values  are calculated by using the proposed scheme. 

ÅComparison the numerical solutions with ὸ

ÅThe values  is substituted into (5)ς(7) and the function ό ὼȠὸis calculated.

Numerical experiment

.



Computational results

.

V ɝὸ ὸ  ὸ

V Noise level  πȢπυ



άExact solutionέ- the numerical solution to the direct problem (5)-(7).

άwŜƎǳƭŀǊƛȊŜŘ ǎƻƭǳǘƛƻƴέ -the numerical solution to the inverse problem (1)-(3).

Computational results

.


