Липецкий государственный технический университет

Влияние локализации полости на упругое состояние двусвязного тела

Пеньков В.Б., Левина Л.В., Уланов В.Н., Копцева А.А.

vbpenkov@mail.ru

Цель работы – исследование влияния положения полости в двусвязном теле на напряженно-деформированное состояние тела (НДС).

Задачи:

- построение НДС полостного тела в численно-аналитической форме средствами метода граничных состояний (МГС, «прямой» метод);
- использование подхода Шварца для эффективной оценки НДС;
- исследование влияния локализации полости на внутреннее состояние тела на примере полостного биконуса.

Математическая модель теории упругости

Соотношения Коши (тензорно-индексная форма)

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right) \tag{1}$$

Обобщённый закон Гука

$$\sigma_{ij} = \lambda \varepsilon_{kk} \,\delta_{ij} + 2\,\mu \varepsilon_{ij} \tag{2}$$

Уравнения равновесия

$$\sigma_{ij,j} + X_i = 0 \tag{3}$$

где ε_{ij} — компоненты тензора деформации, u_i — компоненты вектора перемещений, σ_{ij} — компоненты тензора напряжений, δ_{ij} — символ Кронекера, μ , λ — параметры Ламе, X_i — объемные силы.

Уравнения Ламе

$$\mu \ u_{i,j\,j} + (\lambda + \mu) u_{j,j\,i} + X_i = 0 \tag{4}$$

Основные положения метода граничных состояний

Общее решение уравнений Ламе:

в случае односвязного ограниченного тела

$$u_{i} = 4(1-\nu)B_{i} + x_{j}B_{i,j} - x_{i}B_{j,j}$$
(5.1)

в случае внешности односвязной ограниченной полости

$$u_i = 4(1-\nu)B_i - (x_j B_j)_{,i},$$

где *v* - коэффициент Пуассона, *B_i* - компонента гармонического вектора. Внутреннее состояние

$$\boldsymbol{\xi} = \{\boldsymbol{u}_i, \boldsymbol{\varepsilon}_{ij}, \boldsymbol{\sigma}_{ij}\} \tag{6}$$

Граничное состояние

$$\gamma = \{u_i, p_i\} \tag{7}$$

Разложение в ряды Фурье

$$u_i = \sum_k c_k u_i^{(k)}, \quad \sigma_{ij} = \sum_k c_k \sigma_{ij}^{(k)}, \quad \varepsilon_{ij} = \sum_k c_k \varepsilon_{ij}^{(k)}. \tag{8}$$

$$u_{i} = \sum_{k} c_{k} u_{i}^{(k)}, \quad p_{i} = \sum_{k} c_{k} p_{i}^{(k)}$$
(9)

Слайд 3

(5.1)

(7)

Гармонический вектор

$$\mathbf{B} \in \begin{pmatrix} \varphi \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \varphi \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \varphi \\ \varphi \end{pmatrix}$$
(10)

Для внутренности ограниченной области

$$\varphi \in \{x, y, z, yz, xz, xy, x^2 - z^2, y^2 - z^2 \dots\}$$
(11)

для внешности полости

$$\varphi \in \{1/r, x/r^3, y/r^3, z/r^3, yz/r^5, xz/r^5, xy/r^5...\} \quad r = \sqrt{x^2 + y^2 + (z - z_0)^2}, \quad (12)$$

где r – модуль радиус-вектора, отсчитываемого от (0,0, z_0)

Алгорифм Шварца

МГС можно использовать напрямую при решении задач со многими полостями, но это ведет к формированию объектов большой размерности. Метод Шварца разбивает постановку на ряд простых задач, каждая из которых решаешься с помощью МГС и при этом объекты большой размерности не возникают.

Рисунок 1 – Последовательность решения алгоритма Шварца

Эффективный алгоритм Шварца

Шаг 0. Решается краевая задача для тела, занимающего область V^- ГУ соответствуют заданным требованиям. Отслеживаются состояния $\xi_{\langle 0 \rangle}^- \leftrightarrow \gamma_{\langle 0 \rangle}^-$ Форма границы ∂V^+ позволяет оценить след γ^+ состояния $\xi_{\langle 0 \rangle}^-$ и внести поправку в ГУ на ∂V^+ После этого решается краевая задача для ∂V^+ со скорректированными ГУ и строятся состояния $\xi_{\langle k \rangle}^+ \leftrightarrow \gamma_{\langle k \rangle}^+$ Шаг k. Оценивается поправка γ^+ для ГУ на ∂V^- и выполняется коррекция ГУ* в задаче для V^- . Решается краевая задача для V^- , вычисляется след γ^+ от $\xi_{\langle k \rangle}^-$ на ∂V^+

Напряженно-деформированное состояние полостного биконуса

Рассматривается однородное изотропное упругое тело в форме биконуса, содержащего сферическую полость (рис.2). Положение полости варьируется вдоль оси биконуса параметром h. Требуется оценить влияние положения полости на НДС тела и установить предельное значение положения центра полости, допускающее упругое состояние предразрушения. Граничные условия: боковые поверхности – свободны от нагрузки, полость нагружена постоянным внутренним давлением p_0 .

Рисунок 2 – Полостной биконус

Граничные условия:

 $\mathbf{p}|_{\mathbf{S}_{1}} = \{0, 0, 0\}; \, \mathbf{p}|_{\mathbf{S}_{2}} = \{0, 0, 0\}; \, \mathbf{p}|_{\mathbf{S}_{3}} = \{\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta\};$

Параметризация:

• подобласть V_1 :

$$\{x \to r \cos \varphi, y \to r \sin \varphi\}$$

- подобласть V_2 : { $x \to r \cos \varphi \cos \theta$, $y \to r \cos \theta \sin \varphi$, $z \to r \sin \theta$ }
- граница _{S1}:

$$\{x \to (1+z)\cos\varphi, y \to (1+z)\sin\varphi\}$$

• граница _{S2}:

$$\{x \to (1-z)\cos\varphi, y \to (1-z)\sin\varphi\}$$

• граница _{S3}:

$$\{x \to \frac{1}{4}\cos\theta\cos\varphi, y \to \frac{1}{4}\cos\theta\sin\varphi, z \to \frac{\sin\theta}{4}\}$$

Результаты решения

Рисунок 3 – Изолинии напряжений: А) центр полости в {0,0,0}; Б) центр полости в {0,0,1/8}; В) центр полости в {0,0,1/4}

Результаты решения для

Рисунок 2 – Изолинии напряжений: А) центр полости в {0,0,0}; Б) центр полости в {0,0,1/8}; В) центр полости в {0,0,1/4}

Результаты решения

Рисунок 4 – Интенсивность напряжений на контуре полости h – положение полости вдоль оси z

Заданный характер нагружения свидетельствует о том, что наибольшие значения σ_i достигаются на границе полости.

Интенсивность напряжений на контуре полости

Выводы

- использование «прямого» подхода требует существенных энергетических затрат: значительный рост величины мантиссы в представлении чисел при вычислениях и квадратично возрастающее время счета с ростом размерности удерживаемого отрезка базиса пространства внутренних состояний, в первую очередь, при проведении ортогонализации;
- подход Шварца существенно снижает временные затраты и, несмотря на итерационность и отсутствие доказательств сжимаемости отображений при итерациях, приводит к цели гораздо эффективнее;
- анализ зависимости НДС от параметров нагружения позволяет установить предельно-допустимые значения варьируемых параметров при обеспечении прочности;
- наличие сингулярностей формы тела (криволинейные ребра, конические тачки) требует разработки методов построения специальных решений для учета их влияния на НДС.

Спасибо за внимание!